Lens Equation Worksheet

1. Determine the image distance and image height for a $5.5-\mathrm{cm}$ tall object placed $54.0-\mathrm{cm}$ from a converging lens having a focal length of 20.0 cm .
2. Determine the image distance and image height for a $5.0-\mathrm{cm}$ tall object placed $48.0-\mathrm{cm}$ from a converging lens having a focal length of 24.0 cm .
3. Determine the image distance and image height for a $4.8-\mathrm{cm}$ tall object placed $26.0-\mathrm{cm}$ from a converging lens having a focal length of 16.0 cm .
4. Determine the image distance and image height for a $6.8-\mathrm{cm}$ tall object placed $10.0-\mathrm{cm}$ from a converging having a focal length of 14.0 cm .
5. A magnified, inverted image is located a distance of 38.0 cm from a converging lens with a focal length of 10.0 cm . Determine the object distance and tell whether the image is real or virtual.
6. An inverted image is magnified by 2 when the object is placed 26 cm in front of a converging lens. Determine the image distance and the focal length of the lens.
7. A diverging lens has a focal length of -14.8 cm . An object is placed 38 cm from the lens's surface. Determine the image distance.
8. Determine the focal length of a diverging lens that produces an image that is 16 cm from the lens (and on the object's side) when the object is 34 cm from the lens.
9. A $2.65-\mathrm{cm}$ diameter coin is placed a distance of 32 cm from a diverging lens that has a focal length of -14 cm . Determine the image distance and the diameter of the image.
10. The focal point is located 22 cm from a diverging lens. An object is placed 10 cm from the lens. Determine the image distance.
